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Chapter 1 - Introduction 

1.1. Purpose Statement 

Measuring cloud-top heights and their evolution in time is extremely important for NASA. Accurate cloud 

height data enhances the calibration and validation of radiometric instruments on satellites, ensuring 

precise measurements of Earth's atmosphere. This in turn helps in understanding the interaction 

between clouds and radiation, which is needed for studying Earth's energy balance and climate. By 

accurately measuring cloud heights, NASA can refine radiometric algorithms, improve the quality of 

satellite data, and enhance the overall accuracy of atmospheric observations, resulting in better climate 

models and weather predictions. 

 

NASA aims to reduce the cost of future missions but also solve limitations with cloud height 

measurements from LiDAR installations with limited field of view. This project aims to develop a 

predictive model to estimate cloud height utilizing high-definition images captured from the Fly’s Eye 

GLM Simulator (FEGS) along with (LiDAR) data. 

 

1.2. Problem & Setting 

The Geostationary Lightning Mapper (GLM) is a lightning detection sensor onboard the GOES-16 

satellite. To validate the GLM, NASA developed the FEGS. The FEGS is a multi-spectral radiometer system 

that features 30 radiometers and an HD camera. It is mounted aboard the NASA ER-2 aerial laboratory, a 

plane that operates at altitudes ranging from 20,000 feet to 70,000 feet, above 99% of the Earth’s 

atmosphere. During a flight campaign in 2017 to validate the recently launched GOES-16, the ER-2 flew a 

suite of instruments that included FEGS and the Cloud Physics LiDAR (CPL) for measuring the height of 

clouds. NASA’s current objective is to reduce the cost of future aerial meteorological missions; cameras 

are lower cost, more prevalent, and have much larger 90-degree fields of view.  

While LiDAR is effective at accurately measuring the height of cloud-tops, it only provides a single point 

value corresponding to where the lasers are pointed. This can provide a ground truth for the center of 

the cloud-top heights, allowing us to train and validate a model to estimate cloud-top height using the 

HD images from FEGS. 

 

The main problem can be defined as: How can we use high-definition images from the FEGS combined 

with LiDAR data to accurately estimate cloud-top heights and create a 3D-mesh cloud projection? 

1.3. Subproblems  

1.3.1. Estimate Cloud-Top Height Mesh using object tracking and parallax 

• Identify cloud-top features to track across fields of view. 

• Adjust for lens distortion and viewing geometry. 

• Use parallax and aircraft velocity to calculate cloud-top height. 
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1.3.2. Predictive Model for Cloud Height Estimation 

We aim to utilize high-definition images captured from FEGS along with metadata about the aircraft and 

Light Detection and Ranging (LiDAR) data for the development of the predictive model for cloud-top 

height estimation. 

By combining high-definition (HD) images from FEGS with their metadata and LiDAR, we can use the 

wide viewing angles of cameras and the accurate distance measurements from LiDAR to construct a full 

and accurate three-dimensional picture of cloud structures. 

1.3.3. Atmospheric Condition Correlation 

Investigate the relationship between the generated point clouds and various atmospheric conditions. 

• Develop models to recognize specific weather patterns or phenomena from the point cloud 

data. 

• Create methods to integrate the point cloud data into existing climate models for improved 

accuracy. 

1.3.4. GLM Data Validation Using Point Clouds 

Develop methods to utilize the generated point cloud data to validate and improve the GLM 

measurements. 

• Correlate lightning events detected by the GLM with the 3D cloud structures represented in the 

point clouds. 

• Use detailed cloud structure information from the point clouds to analyze and potentially 

improve the sensitivity of GLM lightning detection. 

• Develop techniques to use the point cloud data to help identify and reduce false-positive 

lightning detections in the GLM data. 

• Investigate how different cloud structures and opacities, as represented in the point clouds, 

affect GLM lightning detection accuracy. 
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1.4. Theoretical & Conceptual Framework 

 

1.5. A Priori Hypothesis 

The project posits that by integrating high-definition images with LiDAR data and applying machine 

learning models, we can generate accurate and comprehensive 3D point cloud representations of 

atmospheric cloud-tops. 

1.6. Variables & Key Concepts 

1.6.1. Image Quality Assessment 

Independent Variables: 

• Image Resolution: Higher-resolution images provide more detailed information, improving the 

model's ability to identify cloud structures. 

• Brightness Level: Adequate brightness is needed so that cloud features are visible and 

distinguishable. 

• Blurriness Level: Lower blurriness levels contribute to clearer images, which enhance the 

model's accuracy. 

• Distance from Ground: This affects the perspective and scale of the captured images, influencing 

the model's interpretation of cloud height and structure. 

Dependent Variable 

Image Quality Score: A custom score assessing the overall quality of the image for model consumption. 

1.6.2. Machine Learning Model for Point Cloud Generation 

Independent Variables: 
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• LiDAR Point Data: Provides the height of clouds at specific points, serving as ground truth for 

model training. 

• Pixel Intensity: This represents the brightness and color information of each pixel in the HD 

images, contributing to the detection of cloud boundaries and features. 

• Spatial Coordinates: The location of each pixel in the image is essential for aligning LiDAR data 

with corresponding image points. 

• FEGS Aircraft Navigation Metadata: track angle, drift angle, altitude, pitch, yaw, roll, heading, 

speeds (indicated, true, ground), bank, aircraft vertical velocity, etc. 

Dependent Variable: 

Point Cloud Accuracy: A metric evaluating the precision and completeness of the generated point cloud 

in representing the actual cloud structure. 

1.6.3. Evaluation of Predictive Models for Cloud Height Estimation 

Independent Variables 

• Model Architecture: 

o Type of Machine Learning Model: Algorithms such as Convolutional Neural Networks 

(CNNs) for image data and PointNet for LiDAR data. 

o Layer Configuration: Convolutional layers for image features and point cloud layers 

for LiDAR data. 

o Training Parameters: Learning rate, batch size, and number of epochs. 

Feature Engineering 

• Raw Data Features: Pixel intensity, spatial coordinates, and LiDAR point height. 

• Derived Features: Spatial features capture the position and distribution of cloud points. 

• Data Augmentation: Techniques like rotation, scaling, and noise addition. 

Dependent Variables 

Performance consistency across different weather conditions and cloud types, and accuracy on unseen 

data through cross-validation and independent testing. 

 

1.7. Assumptions, Delimitations, & Limitations 

This project assumes that: 

• Data Quality: High-definition images and LiDAR data captured by the NASA ER-2 aerial 

laboratory will be of high quality and sufficient for training and validating the machine learning 

models.  

• Timestamp Alignment: Timestamps for HD images and LiDAR measurements can be accurately 

synchronized to ensure precise alignment of the datasets  

• Data Source Consistency: Cloud structures captured during different flights will exhibit enough 

consistency to allow for effective model training and validation.  
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• Field of View Requirements: The 90-degree field of view for the camera will be sufficient to 

capture a comprehensive representation of the cloud structures needed for model training and 

validation. 

• Flight Metadata Accuracy: Accurate metadata with respect to the ER-2 aircraft carrying the FEGS 

is made available to us, such as altitude, pitch, yaw, roll, heading, speeds (indicated, true, 

ground), bank, and aircraft vertical velocity. 

The project will focus on data collected from the NASA ER-2 aerial laboratory, specifically the HD images 

and LiDAR data obtained during specific flight missions. The study will only include the geographical 

areas that the ER-2 flights covered, which might not include all cloud types and atmospheric conditions 

on a global scale. Furthermore, the project will utilize data collected over a defined period, limiting the 

analysis to specific seasonal and weather conditions. 

Integrating HD images and LiDAR data presents technical challenges, including aligning data spatially and 

temporally as well as handling discrepancies in data quality and resolution. Noise is also a relevant factor, 

which can arise from motion blur, lighting issues, or inherent noise from LiDAR sensors, potentially 

affecting the data quality and model accuracy. The ability of the machine learning models to generalize 

to unseen data and different atmospheric conditions may be limited, impacting the robustness of point 

cloud generation. The availability of computational resources necessary for processing sizable datasets 

and training computationally intensive machine learning models may also place restrictions on the 

project. Lastly, variations in environmental conditions, such as cloud density, lighting, and weather 

patterns, may affect the parallax calculations and, consequently, the accuracy and consistency of the 

generated point clouds. 

1.8. The Importance of the Study 

Understanding cloud-top heights and their temporal evolution is vital to comprehending cloud-top 

processes and their interactions with local meteorology and climate. HD cameras, being cost-effective 

and easy to deploy, can be readily installed on CubeSats, weather satellites, and space stations, and they 

are already ubiquitous in many current systems. If HD image data could be used to estimate cloud-top 

height, this widespread deployment of cameras will provide global monitoring capabilities for cloud-tops 

and significantly enhance the accuracy of weather predictions by offering more detailed and frequent 

observations. It would also help to refine the radiometric algorithms that satellites, such as the GOES-16, 

use to gather data. Ultimately, this research will support better climate models, improved weather 

predictions—especially extreme weather forecasts—and more cost-effective future aerial meteorological 

missions. 

Chapter 2 – Literature Review 
To properly consider the cloud2cloud (c2c) project within the broader field of atmospheric remote 

sensing and inform a methodological approach, we examine a range of relevant research papers. The 

selected papers cover important topics related to measuring cloud height, such as satellite imagery, 

stereoscopic and multi-angle imaging methods, LiDAR applications, and 3D cloud structure 

reconstruction methods. We both explore current capabilities and limitations in cloud height estimation, 
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find new methodologies for data integration and validation, and identify key challenges that the c2c 

project must address. 

 

The review is structured thematically, focusing on three areas: 

1. Cloud Height Measurement and Estimation: Various techniques for estimating cloud heights 

using instruments such as LiDAR, all-sky cameras, and airborne sensors. 

2. 3D Cloud Structure Reconstruction: Methods for reconstructing three-dimensional cloud 

structures from two-dimensional imagery. 

3. Calibration and Validation: Ensuring the accuracy of cloud measurements. 

2.1 Cloud Height Measurement and Estimation 

2.1.1. Motivation and Challenges 

Accurate cloud base and top height measurements are needed in various applications in meteorology, 

aviation, and climate science. Mussa et al. (2022) and Bedka et al. (2007) both discuss the significance of 

precise cloud height data for improving the accuracy of atmospheric observations and models. Mussa et 

al. investigated cloud height and coverage because they affect the analysis of cosmic rays at the Pierre 

Auger Observatory. Bedka et al. checked the accuracy of cloud-top pressure products made by satellites 

using LiDAR data from aircraft.  

 

Borisov et al. (2023) and Nied et al. (2023) explore the use of artificial neural networks and convolutional 

neural networks, respectively, to estimate cloud heights from imagery. Borisov et al. (2023) introduce a 

novel approach using parallax effects observed with wide-angle cameras and neural networks to 

estimate cloud base heights, addressing the limitations of expensive and complex equipment in maritime 

conditions. Nied et al. (2023) focus on detecting high-level clouds above aircraft using CNNs, which is 

necessary to improve the accuracy of aerosol measurements in remote sensing. They also note that 

existing calculation methods are too slow to be used in near-real time scenarios, such as where the 

aircraft must avoid flying through or below such clouds for aerosol measurement. Nied et al. (2023) also 

notes photo imagery as being superior to some other sensor methods in detecting the presence of 

clouds. Both papers demonstrate the effectiveness of machine learning techniques in overcoming the 

limitations of traditional methods and providing cost-effective and adaptable solutions for cloud height 

estimation. 

 

McGill et al. (2002) developed advanced instruments for high-resolution cloud measurements. The paper 

discusses the Cloud Physics LiDAR (CPL), designed to overcome the limitations of previous LiDAR systems 

by using state-of-the-art technology. The paper emphasizes the challenges of high-altitude 

measurements and the need for high temporal and spatial resolution while maintaining sensitivity. The 
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CPL’s innovative design, featuring a high-repetition-rate laser and photon-counting detectors, addresses 

these challenges, demonstrating significant improvements in data accuracy and reliability. 

2.1.2. Proposed Solutions 

Mussa et al. (2022) and Bedka et al. (2007) address the limitations of traditional instruments and 

methods for providing accurate cloud height measurements. Existing solutions like the rotating-beam 

ceilometer (RBC) and standard satellite-based instruments often struggle with issues such as sensitivity 

to noise, limited spatial resolution, and difficulty in differentiating between cloud and aerosol layers. 

These limitations result in inconsistent and unreliable data, which can significantly impact the accuracy 

of atmospheric and climatic models. 

 

Mussa et al. (2022) propose a dynamic threshold-based algorithm for cloud detection using elastic 

multiangle LiDARs at the Pierre Auger Observatory. They use a flexible threshold to find big changes in 

backscatter that show there are clouds, which overcomes the problems with differential-based methods.  

 

Similarly, Bedka et al. (2007) focus on validating satellite-derived CTP products using high-resolution, 

aircraft-based CPL data. They leverage the precise and continuous measurements from the CPL as a 

benchmark for assessing satellite data accuracy. The analysis compares cloud-top height (CTH) products 

from the GOES-12 Imager and Sounder with CPL measurements obtained during the ATReC field 

campaign. By evaluating various cloud types and conditions, the paper highlights the strengths and 

weaknesses of the satellite measurements, providing evidence that GOES-12 Imager data generally 

aligns better with CPL measurements, particularly for mid-level and low clouds. 

 

Borisov et al. (2023) and Nied et al. (2023) explore the use of advanced machine learning techniques to 

estimate cloud heights from imagery. Traditional methods often involve expensive and complex 

equipment like LiDARs and aircraft, which are impractical in unstable conditions, such as maritime 

environments, or may rely on subjective visual assessments that introduce high variability and 

uncertainty. 

 

Borisov et al. (2023) address these challenges by using the parallax effect observed with two wide-angle 

cameras mounted apart to estimate the cloud base height (CBH). By capturing synchronous optical 

images of the sky from different angles, the parallax phenomenon allows for accurate CBH calculation. 

The analysis uses the Sail Cloud v.2 system to make observations in the field, neural network-based 

transformations to fix for camera positioning errors, and the pretrained SuperGlue graph-based neural 

network (GNN) to match key points in the images. The paper validates its claims by comparing the CBH 

estimates with ERA-5 reanalysis data, demonstrating consistency, particularly for cirrus and cumulus 

clouds. The study found that the SuperGlue GNN demonstrated superior performance compared to SIFT, 

delivering a significantly higher number of matching keypoints. 
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Nied et al. (2023) leverage convolutional neural networks (CNNs) to detect high-level clouds above 

aircraft using upward-looking cameras. Existing solutions often rely on satellite-based instruments or 

additional onboard sensors, which are costly and complex. Instead, they trained CNN models on labeled 

images from airborne missions to learn cloud detection with high accuracy. As part of the setup, images 

mostly from NASA's ACTIVATE and CAMP2Ex missions were used to train the models. They were then 

checked against human-labeled datasets and compared to the SPN-S instrument's cloud mask product. 

The paper demonstrates the effectiveness of the CNN models, achieving a detection accuracy of 96%, 

and proves its claims through experiments and validation. 

 

McGill et al. (2002) describe the development of the CPL to address the limitations of previous LiDAR 

systems, such as multiple scattering issues and limited dynamic range. Existing solutions, like the Cloud 
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LiDAR System (CLS), suffered from these issues, along with the aging hardware and practical limitations 

of analog signal acquisition. The idea behind the CPL is to use high-repetition-rate laser and photon-

counting detectors to improve eye safety, compactness, reliability, and data accuracy. The setup involved 

deploying the CPL on a high-altitude ER-2 aircraft during the SAFARI 2000 field campaign, with 

multiwavelength measurements to provide detailed profiles of clouds and aerosols. The paper proves its 

claims through field deployment results, comparative analysis with other instruments, and detailed high-

resolution profiles. 

 

2.2 3D Cloud Structure Reconstruction  

2.2.1. Motivation and Challenges 

A key problem identified across multiple papers, including those by Hasler (1981) and Yu et al. (2019), is 

the accurate measurement and reconstruction of cloud heights and structures. Traditional methods 

relying on two-dimensional (2-D) satellite observations and infrared-based techniques have significant 

problems. Hasler (1981) notes that infrared methods suffer from low horizontal resolution and 

inaccuracies due to various assumptions about cloud emissivity and atmospheric conditions. Yu et al. 

(2019) emphasize that 2-D data are insufficient for precise radiation transmission calculations and 

climate modeling, indicating the need for three-dimensional (3-D) data to improve these predictions. 

 

The importance of accurate cloud measurements is universally acknowledged across all the papers. 

Hasler (1981) highlights the necessity for precise cloud height data to understand and predict severe 

weather phenomena like hurricanes and thunderstorms. Yu et al. (2019) extend this by emphasizing the 

role of 3-D cloud structures in enhancing the accuracy of radiation transmission calculations and climate 

change forecasts. 

 

The challenge of this research lies in the complexity of accurate 3-D reconstruction. Hasler (1981) points 

to the synchronization issues between satellite images and the geometric irregularities that complicate 

precise height measurements. Yu et al. (2019) discusses the substantial data requirements and the 

complex algorithms needed for multi-angle observations, which are essential for defining cloud 

structures accurately. Hadjitheophanous et al. (2010) talk about how hard it is to do real-time 3-D 

reconstruction on general-purpose processors. They say that the technique needs to be able to do 

efficient computations to work in embedded and mobile systems. 

 

Existing solutions often fall short due to their reliance on limited observational angles and computational 

inefficiencies. Hasler (1981) notes the inaccuracies and low resolution of infrared methods, while Yu et 

al. (2019) points out the insufficient coverage satellites like CloudSat and CALIPSO provide. 

Hadjitheophanous et al. (2010) criticize software-based solutions for their high computational and power 

requirements, which are unsuitable for real-time applications. 
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2.2.2. Proposed Solutions 

Hasler (1981), Yu et al. (2019), and Hadjitheophanous et al. (2010) offer novel approaches to overcoming 

the limitations of existing methods for 3D cloud structure reconstruction. 

The solutions proposed in these studies involve using advanced observational techniques and hardware 

implementations. Hasler (1981) proposes the use of stereographic observations from geosynchronous 

satellites. This technique relies on straightforward geometric relationships to provide much higher 

horizontal resolution and accuracy compared to infrared methods. By capturing stereo images from 

geosynchronous satellites positioned at different longitudes, the approach leverages the parallax effect 

to measure cloud heights with greater precision. Yu et al. (2019) suggests using multi-angle, multi-

spectral and polarization data from the DPC onboard the GF-5 satellite. The DPC takes pictures of the 

same target from different angles. This let's cloud structures be reconstructed in 3D space using a ray 

casting algorithm. This algorithm figures out where cloud voxels are located by comparing where rays 

from different angles meet. Hadjitheophanous et al. (2010) suggest putting the 3D reconstruction 

algorithm on FPGA hardware, taking advantage of the algorithm's built-in parallelism. This approach 

includes a Sobel edge detection unit to reduce the amount of data processed, increase frame rates, and 

achieve real-time performance. 

Each study successfully proves its claims through empirical verification and comparative analysis. Hasler 

(1981) demonstrates the accuracy of stereo height measurements by comparing them with known 

altitudes of high-altitude mountain lakes, achieving accuracy within ±0.1–0.2 km near reference points 

and ±0.5 km for general cloud features. The application of these measurements to meteorological 

problems, such as severe thunderstorms and hurricanes, further substantiates the efficacy of 

stereographic observations. Yu et al. (2019) show that their 3D reconstruction method works by showing 

that it matches up with CALIOP data in terms of vertical profiles and cloud boundaries. They also give 

accurate measurements of the reconstructed clouds. Hadjitheophanous et al. (2010) achieve real-time 

performance with frame rates up to 75 fps for 320x240 image pairs, demonstrating the system's 

efficiency across different parameter settings. The integration of the Sobel edge detector significantly 

enhances performance by reducing the amount of data processed. 

2.3 Calibration and Validation 

2.3.1 Motivation and Challenges 

Bedka et al. (2007) focus on validating satellite-derived CTP products using aircraft-based CPL data. The 

problem here is ensuring the accuracy of CTH measurements, which are needed for meteorology, 

aviation safety, and climate studies. The difficulty lies in the discrepancies introduced by the differences 

in spatial and temporal resolution between satellite instruments and in-situ measurements, along with 

the inherent complexity of cloud structures. Existing solutions often fall short due to these complexities. 
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Vaughan et al. (2010) addresses the calibration of the CALIOP 1064 nm LiDAR channel, which is 

necessary for reliable atmospheric measurements. The challenge here involves weaker signal levels, 

noise, and the natural variability in the backscatter color ratio of cirrus clouds. Existing calibration 

methods based on potentially flawed assumptions can lead to significant errors. 

2.3.2 Proposed Solutions 

In 2007, Bedka et al. looked for and fixed problems in satellite data by comparing CTH products from the 

GOES-12 Imager and Sounder with CPL measurements taken during the ATReC field campaign. The study 

focuses on various cloud types and conditions and includes a brief comparison with MODIS-Aqua CTH 

retrievals. Their results indicate that the GOES-12 Imager generally agrees better with CPL 

measurements than the GOES-12 Sounder, particularly for mid-level and low clouds. The study clearly 

shows the pros and cons of current satellite measurements and backs up its claims with in-depth analysis 

and real-world examples. Using high-resolution LiDAR measurements provides a more accurate standard, 

showing that satellite-derived data could be more accurately validated. 

 

Vaughan et al. (2010) calibrated the CALIOP 1064 nm LiDAR channel using cirrus clouds. They employed 

a measurement-based approach to determine the best estimate of the mean backscatter color ratio for 

cirrus clouds. They studied how cirrus cloud backscatter coefficients change with wavelength by 

examining more than 400 hours of LiDAR data from the CPL. As part of this study, they found backscatter 

color ratios for cirrus clouds and made sure the calibration process worked by comparing the color ratios 

found by CPL with the assumptions used in the CALIPSO calibration scheme. They accounted for aerosol 

loading in the normalization region using data from multiple satellites to apply a parameterized 

correction factor. Their findings showed that the best estimate for the backscatter color ratio of cirrus 

clouds is 1.01 ± 0.25, aligning with pre-launch assumptions and measurements. This result reassured the 

validity of the CALIOP 1064 nm calibration algorithm and revealed the need for a large sample size to 

minimize calibration errors.  

 

2.4 Conclusion – Relevance To This cloud2cloud Project 

 

The literature reviewed provides a comprehensive overview of previously studied approaches relevant to 

the cloud2cloud project. Mussa et al. (2022) and Bedka et al. (2007) discuss how important it is to get 

accurate measurements of cloud height and suggest ways to make them more accurate by using 

advanced instruments such as the flexible threshold-based algorithm for cloud detection and validation 

techniques using high-resolution LiDAR data. This is similar to our project's plan to combine HD images 

and LiDAR data to improve estimates of cloud height. Borisov et al. (2023) and Nied et al. (2023) show 

that ML techniques, especially artificial neural networks and CNNs in particular, are good at estimating 

cloud heights from images and Nied et al. (2023) notes that HD imagery is superior to detecting cloud 

presence as opposed to some other sensors used. This supports our plan to use CNN and RNN models in 

this project and the focus on using camera imagery. The work of McGill et al. (2002) on high-resolution 
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LiDAR systems provides a foundation for using LiDAR data as a benchmark for validating our predictive 

models. Hasler (1981), Yu et al. (2019), and Hadjitheophanous et al. (2010) all look into different ways to 

reconstruct 3D cloud structures while dealing with issues like data synchronization and computational 

efficiency. Finally, Bedka et al. (2007) and Vaughan et al. (2010) talk about calibration and validation, 

which stress how important it is that the cloud measurements we receive from NASA are reliable. 

 

Together, these references inform the methodologies we plan to employ in the cloud2cloud project, 

ensuring a well-rounded approach to cloud height estimation and 3D reconstruction. 

 

Chapter 3 – Methodology  

3.1 Infrastructure 

 

We are proposing to do this project on the AWS Platform which will help manage large storage 

requirement as well as compute power for intensive ETL and model training jobs: 

• AWS S3 Buckets for Data Storage (100 GB of storage will cost ~ USD 2 per month) 

• AWS Glue for Data Preparation and any potential ETL pipelines (~ USD 4.4 per month) 

• AWS Sagemaker for Model Training, Tuning and Validation (1 Sagemaker notebook shared by the 

group may lead to a cost of ~ USD 350 per month) 

• AWS Quicksight for Results Analysis & Visualization (~ USD 24 per month) 

These costs are just initial ballpark estimates and may change significantly as we progress on the actual 

implementation. 

SageMaker Instance proposed with compute power to support deep learning for this project - 

 

ml.p3.2xlarge 

Compute Type: Accelerated Computing Instances 

V CPU: 8 

Memory: 61 GiB 

Clock Speed: 2.3 GHz 

GPU: 1 

Network Performance: N/A 

Storage: EBS only 

GPU Memory: 16 
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3.2 Data 

3.2.1. Data Sourcing and Collection 

Following data sources obtained from NASA are being considered for the project: 

• The sky videos from the HD Camera onboard FEGS will be the primary data source for training 

the proposed model. 

• Aircraft navigation metadata data: plane speed, pitch, yaw, altitude, etc. 

• Light Detection and Ranging (LiDAR) data for validation. This data provides the cloud height at 

the center of each image frame from the HD camera. 

3.2.2. Data Storage 

We plan to store all the data in shared AWS S3 buckets with strict access control. This location will serve 

as the primary source for the entire machine learning pipeline, including model training and validation. 

The output from various model runs will also be stored in the same shared location in a dedicated 

output folder with version control for every significant / important run. 

Trained models will also be archived in a trained_models folder in the same location. 

Key model performance metrics in a delimited text file and key visualization plots from various runs will 

be logged in this shared location for comparison and future analysis. 

3.2.3. Data Cleaning and Preparation 

Remaining inside the AWS platform will allow for easy integration between services, so we will use AWS 

Glue. AWS Glue allows the creation of extract, transform, and load (ETL) data pipelines. The data 

cleaning and preparation process will involve the following steps: 

 

1) Defining tables for the AWS Glue Catalog 

o Some of the source tables will be video files from the Fly’s Eye GLM Simulator (FEGS), 

LiDAR data, and aircraft navigation metadata. 

o The destination tables will contain processed and cleaned data ready for modeling 

consumption. 

2) Creating transformation jobs. Develop ETL jobs in AWS Glue to transform the raw data into a 

usable format. 

o Standardize the images for size, resolution, brightness, and blurriness. 

o Remove features from the images that are not related to the clouds (e.g., the aircraft 

window and dirt particles on the lens or frames where the plane is turning around). 

o Correct the images for noise. 

o Handling missing values. 

o Completeness and accuracy of the metadata. 

o Synchronize all data sources from a time-series perspective (align all data sources 

temporally and spatially). We would also need to subtract the LiDAR measurement from 

the aircraft altitude to get the cloud height. 

o Outlier analysis   
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3) Running the jobs and analyzing results using AWS Glue Studio 

o Run ETL jobs as described 

o Use AWS Glue Studio's visual tools to analyze the results and ensure the ETL process is 

functioning correctly. 

o Verify the integrity of the cleaned data for subsequent modeling phases. 

3.2.4. Data Sampling Methods 

• Our camera videos are 30 frames per second while LiDAR is once per second. We can remove 

most extra image frames and use 1 image frame per second to match with the Lidar data. This 

will greatly reduce the number of image frames we work with. 

• We can start with one flight video (~40 minutes) for initial modeling and then increase sampling 

of flights across different days, regions, and weather patterns. 

3.3 Feature Engineering 

We will identify key features from the prepared dataset that could improve the predictive power of the 

model. It might be worth exploring and potentially beneficial to enrich the data with certain derived 

composite features that could further enhance the model performance. We will use Amazon Sagemaker 

Data Wrangler to perform feature engineering which involves features selection and feature enrichment. 

Some computer vision techniques will be explored as: 

i. Image Stitching: creating a mosaic image from the multiple image frames by finding matching key 

points on the images.  

ii. Image Augmentation: exploring color contrast and saturation (examples in figures A and B). 

iii. Projective Transformations: calculating trigonometric distances to extract information about the 

height of other points on the image rather than the center. 

iv. Feature extraction: using pre-trained neural networks to extract commonly used features such as 

edges, corners and textures. This can be done also using SIFT or BRIEF algorithms.  

 

 

Figure A: Original Image from HD Camera 
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Figure B: Same image from HD Camera with changes in saturation, high contrast and gamma 

 

3.4 Modeling 

3.4.1 Proposed Models 

1. “Structure From Motion” Traditional Methods for 3D Cloud Reconstruction:  

 

 

Figure 1: Workflow for 3D Reconstruction using Multiple View Geometry 

 

Output 3D cloud-top shape using n-view reconstruction algorithms from traditional methods of 

multiple view geometry such as structure from motion (sfm) – a technique to recover 3D 

structure of a scene by making use of a sequence of 2D images. The general idea is that the 

images result from two factors: the relative motion between the camera and the object and the 

object shape. Knowing camera metadata (such as speed, angle, etc.) and time between frames, 

we can apply geometric calculations to obtain our height estimations.  

 

Pre-requisites for Applying Traditional Multiview Geometry Methods: 

a. Object boundaries can be identified within each frame. Match key points 

between sequential images to find corresponding points. 
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b. Identify assumptions made or make reasonable estimates such as 1) cloud 

shape does not change or 2) cloud has minimal movement between frames. A 

great advantage is that we have the true height data from LIDAR to ensure 

assumptions are reasonable (in addition to checking correct algorithm 

applications). 

c. Translate plane terminology (pitch, yaw, etc.) into meaningful mathematical 

equivalents for calculating camera angle, speed, etc. 

Hybrid Approach with Traditional Computer Vision and Deep Learning Methods: 

i. For any of the given pre-requisite steps above, we could try to augment with 

other known algorithms or even deep learning methods. Specifically, for pre-

requisite a, we can use a feature extraction method (e.g. computer vision 

algorithms SIFT and SURF; or deep learning-based models like SuperPoint, D2-

Net) to detect key points in the images. 

ii. We can use these depth calculations using this algorithmic approach as 

additional features to feed into a deep learning model (see #2 CNN-RNN-

Transposed Convolution architecture).  

 

Tomasi-Kanade Factorization Algorithm: 

 

We can also use the factorization algorithm, in which every image frame in a video is considered 

a product of two parameters: motion and shape. Assuming the object shape does not change, 

then if the motion of the camera is constant the image frames would be linear transforms of 

each other. Thus, the factorization algorithm extracts shape parameters from the images to give 

the 3D representation. 

 

2. CNN + RNN type models: Incorporate sequential image frames and flight metadata per each 

frame to learn relationships between frames. 

 

Figure 2: CNN-RNN-Transposed Convolution architecture 

 

a. Neural Networks (CNNs) - CNNs are popular and commonly used models for image 

classification, regression, object detection, and other computer vision applications. They 

work well with grid-like data, much like our case, which is a 2D frame sampled every 

second from the HD video. They use convolution layers to apply convolutional filters to 
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the input images for feature extraction. Pooling layers then reduce the dimensionality of 

the feature maps, making the computation more efficient and reducing the risk of 

overfitting. Fully connected layers are used at the end for regression or classification. 

The addition of convolutional layers to the CNN makes them hierarchical, as the later 

layers can see the pixels within the receptive fields of prior layers. This could be 

particularly useful in the problem we are dealing with here, enabling the network to 

capture both low and high-level details from the images. 

b. UNETs - U-Nets are typically used for segmentation rather than regression tasks like 

predicting a height field/point cloud/mesh. Adapting them for this task might be 

complicated, and they add a lot of computational overhead. However, they do have an 

encoder-decoder architecture, which could improve the upsampling step, and could be 

an option to try if we have the capacity to do so. 

c. Given a set of images and LiDAR measurements taken corresponding to the center of 

each one, we can make a model that uses convolutional neural networks (CNNs) to pull 

out spatial features, recurrent neural networks (RNNs) to model temporal dependencies, 

and upsampling techniques to make the height field (point cloud). 

 

3. ViT-Temporal Transformer-U Net Implementation  

 

Figure 3: ViT-Temporal Transformer-U Net Implementation 

a. Depending on the amount of data and computer resources we have; we could swap the 

CNN for a vision transformer (ViT) to process each image in the sequence and extract 

meaningful features. ViTs could potentially capture more complex and longer temporal 

dependencies within the images using self-attention mechanisms. We could also swap 

the LSTM or GRU for a temporal transformer.  

b. Finally, we could use a U-net for upsampling, as this would preserve long term 

dependencies in the sequential images. These options could work even better but would 

require perhaps 10x the data and a lot more compute power. We plan on considering 

this a stretch goal and will only be attempted once we have the CNN-RNN-Transposed 

Convolution working. 

3.4.2. Model Components 

CNN for Feature Extraction: 

o Extract spatial features from each image that represent the cloud structure. 
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Recurrent Neural Network (RNN): 

• Capture temporal dependencies between sequential images using the feature maps 

extracted by CNN. These could be LSTM or GRU layers. 

 

Upsampling Network: 

• Convert the RNN output into a 2D n x n height field using upsampling layers that 

represent the cloud-top. 

          Custom Loss Function: 

• Use the LiDAR measurement at the center of the image to make a custom loss function 

to train the model. 

3.4.3. Model Training 

Training Procedure: 

• Use the normalized and processed image sequences as input to the chosen model. 

• Use a custom loss function to train the model so that it minimizes the error at the center 

of the LiDAR measurement's predicted height field. 

Optimization: 

• Use the Adam optimizer with an initial learning rate of 0.001 to train the model. 

• Implement a learning rate scheduler to reduce the learning rate if the validation loss 

plateaus. 

Training Loop: 

• Split the data into training, test and validation sets. 

• Perform forward passes, calculate the loss using the custom loss function, and 

backpropagate to update the model weights. 

• Monitor training and validation loss to prevent overfitting. 

3.4.4. Model Tuning 

Hyperparameter Tuning (using validation loss): 

• Experiment with different learning rates, batch sizes, and the number of epochs. 

• Adjust the number of convolutional layers and LSTM layers and their respective sizes. 

• Use grid search techniques to explore hyperparameter combinations. 

Regularization: 

• Apply drop-out layers to the CNN and RNN to prevent overfitting. 
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• Use L2 regularization to penalize large weights in the network. 

Early Stopping: 

• Implement early stopping based on validation loss to prevent overfitting and reduce 

unnecessary training time. 

3.4.5. Model Validation & target performance metric 

Validation Procedure: 

• Use a separate validation set to evaluate the model during training. 

• Calculate the loss on the validation set after each epoch to monitor performance. 

• Adjust hyperparameters and training strategies based on validation performance. 

• Finally, when hyperparameters and architecture appear optimal using the validation set, 

run it on the test set. 

Target Performance Metric: 

• A primary performance metric could be the root mean squared error (RMSE) of the 

height prediction at the center of the height field as compared to the LiDAR 

measurement. 

Cross-Validation: 

• Alternatively, we could perform k-fold cross-validation to really test the model, averaging 

the performance metrics across folds to get a reliable estimate of the model's 

generalization ability. 

Performance Goals: 

• Set specific performance targets, such as a minimum MSE. 

• Aim for low variance between training and validation losses to know we’re not 

overfitting. 

3.5 Ethical, Legal, and Privacy Considerations 

We are using two datasets. The first one is GOES-R PLT Cloud Physics LiDAR (CPL) dataset. The dataset 

consists of data collected during the period April 13, 2017, through May 14, 2017, by Cloud Physics 

LiDAR instrument flown aboard the NASA ER-2. The data is in HD5 format and publicly available at: 

https://cmr.earthdata.nasa.gov/search/concepts/C1979112912-GHRC_DAAC.html. 

The second dataset has recordings from video cameras fitted on the same aircraft and will be publicly 

available.  

 

Since NASA had made the first dataset publicly available and NASA is planning to make the second 

dataset publicly available, there are no ethical, legal and privacy considerations.  

https://cmr.earthdata.nasa.gov/search/concepts/C1979112912-GHRC_DAAC.html
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Since NASA used LiDAR and HD cameras with their ER-2 aircraft to collect the data, we assume that it is 

reliable and trustworthy. 

 

3.6 Execution Timeline 

 

 

Overall project execution plan is to spend significant time for data preparation and infrastructure set-up 

given the size of the dataset and need for cleaning and time-stamp matching. Next, in model selection 

we will explore traditional computer vision and algorithmic approaches, deep-learning methods, and 

hybrid approaches. Finally, we expect to spend time trying to train and further fine tune our most 

promising methods. During this whole process, we expect to constantly update documentation and 

milestone visualizations.  
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