
LSM-Tree Key Value Store Literature Review
Ian Kelk

iak415@g.harvard.edu
Harvard CS265, Spring 2023

ABSTRACT
This literature review examines ten papers addressing performance
issues in Log-Structured Merge-trees (LSM-trees), a widely used
data structure in key-value stores such as RocksDB, LevelDB, and
Cassandra. The papers are categorized into three main groups: (1)
reducing tail latencies, (2) optimizing compaction, and (3) enhancing
memory and storage management. We seek to answer the central
question: how can we address the critical performance bottlenecks,
such as read and write amplification, tail latency, write stalls, and
compaction optimization in LSM-tree based key-value stores to
improve their efficiency, scalability, and consistency for modern
data-intensive applications?

1 INTRODUCTION
Log-Structured Merge-trees (LSM-trees are a popular data struc-
ture used in modern key-value stores, such as RocksDB, LevelDB,
Cassandra, and HBase. LSM-trees are designed to efficiently handle
write-intensive workloads by using a tiered storage hierarchy and
background compaction to manage data. LSM-trees partition data
temporally into a series of increasingly larger levels, where data
enters at the top level and is sort-merged at lower levels as more
data arrives. In-memory structures like Bloom filters and fence
pointers help filter queries to avoid unnecessary disk I/O. Despite
their advantages, LSM-trees can exhibit performance issues, such
as high tail latencies, write stalls (situations where write operations
are temporarily halted or slowed down to allow the system to catch
up with the ongoing compaction process), read amplification, and
write amplification, which can degrade overall system performance
and user experience. In response, researchers have proposed vari-
ous solutions to address these issues in LSM-tree based key-value
stores (LSM KVs).

LSM-trees have seen various improvements to optimize perfor-
mance, including better memory allocation for in-memory compo-
nents, strategic data reorganization through compactions and splits,
concurrency control for concurrent queries, support for time-travel
queries using timestamps, balancing CPU and I/O costs through
compression techniques and data movement, adaptive indexing and
layouts for optimizing performance based on workload patterns,
and incorporating self-designed system ideas for tailored storage
design in different workloads and hardware environments [4].

In this literature review, we discuss ten recent papers that focus
on improving different aspects of LSM-tree performance. We can
group these papers into three main categories:

(1) reducing tail latencies
(2) optimizing compaction
(3) enhancing memory and storage management
We present a logical order for discussing the papers, focusing on

the commonalities within each group and the unique contributions
of each paper. Our central question: how can we address the critical
performance bottlenecks, such as read and write amplification, tail

latency, write stalls, and compaction optimization, in LSM KVs to
improve their efficiency, scalability, and consistency for modern
data-intensive applications?

1.1 Paper for reducing tail latencies
High tail latencies are often caused by interference between client
writes, flushes, and compactions. To address this issue, [1] proposes
SILK+, an I/O scheduler that coordinates client load with internal
operations to reduce high tail latencies while maintaining good
throughput.

1.2 Papers for optimizing compaction
We cover four papers in this review that focus on improving LSM-
tree compaction to reduce write stalls, write amplification, and
read amplification with different techniques. BoLT [5] minimizes
fsync() call frequency to reduce write amplification and write
stalls. UniKV [11] unifies hash indexing and LSM-tree design to im-
prove read, write, and scan performance. [7] focuses on minimizing
write stalls by optimizing LSM merge schedulers and [9] introduces
an on-disk compaction buffer to minimize cache invalidations and
improve performance under mixed read/write workloads.

1.3 Papers for enhancing memory and storage
management

We discuss five papers which propose novel memory and storage
management techniques to improve LSM-tree performance. Elas-
ticBF [6] leverages data hotness to boost read performance in large
key-value stores. Accordion [2] re-applies LSM design principles to
memorymanagement, addressing issues with frequent compactions
and fragmented memory layout. Chucky [3] replaces Bloom filters
with a succinct Cuckoo filter to improve memory bandwidth, mem-
ory footprint, and false positive rate scalability. Lethe [8] efficiently
handles delete operations in LSM-based key-value storage engines.
MatrixKV [10] exploits non-volatile memory to reduce write stalls
and write amplification.

2 REDUCING TAIL LATENCIES
2.1 Motivation and Challenges
Tail latency refers to the higher end of the latency distribution in a
system, usually measured at specific percentiles such as the 95th,
99th, or 99.9th percentile. It represents the worst-case or longer-
than-average response times experienced by a small fraction of
requests or operations in a system. In the context of key-value
stores and databases, tail latency can be an important performance
metric, as it helps to identify the delays or bottlenecks that may
impact user experience or system reliability, especially for latency-
sensitive applications.



Harvard CS265, LSM-Tree Key Value Store Literature Review, 2023 Ian Kelk

High tail latencies in LSM KVs, such as RocksDB, LevelDB,
and Cassandra, can negatively impact the performance of latency-
critical applications and lead to poor user experience. The root
cause of these high tail latencies is the interference between client
writes, flushes, and compactions. Furthermore, addressing high tail
latencies is difficult due to inherent LSM KV design, bursty and
variable workloads, and limitations of existing optimization tech-
niques, which focus primarily on improving throughput. As a result,
there is a need for an effective solution that balances the conflicting
requirements of LSM KVs while managing the interference and
coordinating client load with internal operations.

2.2 Proposed Solution
SILK+ Preventing Latency Spikes in Log-Structured Merge Key-
Value Stores Running Heterogeneous Workloads [1] proposes
an I/O scheduler for LSM KVs that effectively manages interference
and coordinates client load with internal operations to reduce high
tail latencies while maintaining good throughput. It emphasizes
the importance of addressing high tail latencies to enhance the
performance of latency-critical applications, improve user experi-
ence, optimize resource utilization, ensure scalability, and maintain
competitiveness in the market.

The I/O scheduler in SILK employs three key techniques:
• Dynamic bandwidth allocation: The I/O scheduler adjusts the
bandwidth allocation between client and internal operations
depending on the current load. It opportunistically allocates
more bandwidth to internal operations during periods of
low client load, allowing the system to perform maintenance
tasks more efficiently.

• Prioritizing critical internal operations: The scheduler gives
preference to internal operations that may block client oper-
ations. By prioritizing flushes and compactions at the lower
levels of the tree, the system can prevent stalls that lead to
increased latencies for client operations.

• Preempting less critical internal operations: The I/O sched-
uler allows preemption of less critical internal operations to
ensure that resources are allocated to higher-priority tasks,
further reducing the likelihood of latency spikes.

These techniques work together to coordinate the client load and
internal operations, reducing interference and tail latency while
maintaining high throughput. The proposed I/O scheduler is imple-
mented in SILK, derived from RocksDB, and demonstrates signif-
icant improvements in tail latency without negatively impacting
other performance metrics or workloads.

2.3 Limitations and assumptions
The SILK+ solution for preventing latency spikes in LSM KVs has
a few limitations and assumptions. (1) Its applicability to other
LSM KVs is uncertain due to the lack of evidence supporting easy
adaptation. (2) The paper primarily focuses on write-heavy work-
loads, neglecting a comprehensive analysis of tail latency under
different workload types and varying conditions. (3) Scalability and
performance trade-offs associated with the proposed I/O scheduler
are not thoroughly discussed, and the additional complexity intro-
duced may result in increased overhead. (4) The assumption that
latency spikes are mainly caused by bursty client loads and internal

operation interference may not be universally applicable. (5) Lastly,
the evaluation methodology relies on synthetic benchmarks and
a single production workload, limiting the generalizability of the
findings to other scenarios and applications.

3 OPTIMIZING COMPACTION
3.1 Motivation for optimizing compaction
As LSM KVs are widely adopted in modern key-value stores and
NoSQL systems, improving their performance directly benefits the
users and systems that rely on them. Reducing write amplification,
write stall, and data barrier overhead, as highlighted in BoLT [5],
can lead to better overall performance and efficiency of key-value
stores. This ensures faster and more reliable data processing, which
in turn can significantly benefit the applications and systems depen-
dent on the key-value stores in areas like data analytics, real-time
processing, and more.

Persistent key-value storage is a critical storage paradigm in
modern data-intensive applications, including data deduplication,
web search, e-commerce, social networking, and photo stores. As
UniKV [11] demonstrates, improving these systems by unifying
hashing indexing and LSM-tree design can have a significant impact
on the read, write, and scan performance in these applications.

LSM KVs suffer from write stalls and large performance varia-
tions due to inherent mismatches between fast in-memory writes
and slow background I/O operations [7]. By minimizing write stalls
and stabilizing performance, this could lead to enhanced end-user
experiences and reliability of systems that depend on LSM-trees.

In addition to these factors, optimizing compaction is vital for
improving the performance of LSM-trees in mixed read/write work-
loads [9]. Existing LSM-tree based solutions tend to suffer from
high miss rates and performance degradation due to cache invali-
dations from compactions. By reducing the interference on buffer
caching from compactions, query performance can be improved
under mixed read/write workloads while retaining the advantages
of LSM-trees for write-intensive workloads. This optimization can
contribute to enhancing the performance of data management sys-
tems under mixed workloads.

3.2 Challenges of optimizing compaction
Compactions in LSM-trees lead to issues like write amplification,
write stall, and data barrier overhead [5] . Write amplification arises
from compaction operations rewriting the same key-value pairs
multiple times between files, hurting write throughput and caus-
ing storage wear issues. Write stall occurs when compaction fails
to keep up with incoming write requests, blocking subsequent
requests and further impacting write throughput. Data barrier over-
head results from heavy reliance on fsync()/fdatasync() calls
for file consistency, hurting the concurrency level of I/O requests
and under-utilizing storage bandwidth.

LSM KVs struggle to efficiently handle both random accesses
and range queries while retaining their benefits for write-intensive
workloads [9]. Compactions not only lead to cache invalidations and
high miss rates on the DB buffer cache but also cause performance
degradation in mixed read/write workloads.



LSM-Tree Key Value Store Literature Review Harvard CS265, LSM-Tree Key Value Store Literature Review, 2023

Designing a system that combines characteristics of hash in-
dexing and LSM-trees is difficult due to their differences in trade-
offs [11]. While hash indexing supports high read and write per-
formance, it does not support efficient scans and has scalability
concerns. Conversely, LSM KVs are more efficient in terms of sup-
porting writes, scans, and scalability, but they suffer from high
compaction and multi-level access overheads.

Finding ways to minimize write stalls resulting from the inherent
mismatch between fast in-memory writes and slow background I/O
operations in LSM-trees is challenging [7]. Accurately determining
themaximum sustainable write rate, scheduling LSM I/O operations
to minimize write stalls, and evaluating write stalls for various
LSM-tree designs are all complex aspects to address in order to
develop solutions that can achieve high write throughput with low
performance variance.

3.3 Problems with existing solutions for
optimizing compaction

Current solutions have attempted to address some of these issues,
but have not been able to find an optimal balance between SSTa-
bles sizes, data barrier overheads, and other performance concerns
like latency, read amplification, and scalability. There is a need for
innovative approaches that can tackle these challenges while still
retaining the benefits of LSM-trees for write-intensive workloads.

These existing solutions to optimize compaction in LSM-trees do
not work optimally as they fail to address various interconnected
issues. BoLT [5] addresses some problems, but existing key-value
stores like LevelDB and RocksDB still suffer from high write ampli-
fication, write stall, data barrier overhead, and metadata caching
overhead. These issues reduce write throughput, increase latency,
and affect the overall performance of key-value stores.

In UniKV [11], LSM KVs experience difficulties optimizing both
read and write performance without sacrificing scan performance
due to large read and write amplifications. Existing optimizations
make trade-offs and cannot combine hash indexing and LSM-tree
efficiently, which would improve reads, writes, and scans simulta-
neously.

Performance stability in LSM KVs remains a problem as they
suffer from write stalls and large performance variances caused
by the mismatch between their fast in-memory writes and slow
background I/O operations [7]. Existing solutions fail to accurately
measure the maximum sustainable write rate or effectively schedule
LSM I/O operations to minimize write stalls.

Finally, with mixed read/write workloads in LSbM-tree [9], ex-
isting LSM-tree solutions experience low throughput and long la-
tency due to interference caused by compactions on buffer caching.
Proposed solutions, such as Key-Value store cache, dedicated com-
paction servers, and Stepped-Merge algorithm, have limitations
that prevent them from efficiently handling both random and range
queries while retaining LSM-tree merits for write-intensive work-
loads.

3.4 Core intuitions for optimizing compaction
presented in the papers

BoLT: Barrier-optimized LSM-Tree [5] minimizes the number
of calls to fsync()/fdatasync() barriers while taking advantage

of fine-grained SSTables in key-value stores. BoLT achieves this
by decoupling SSTables from physical files, which allows multiple
SSTables to be stored in a single physical file, thereby reducing
the file consistency overhead. It consists of four key elements: (i)
compaction file, (ii) logical SSTables, (iii) group compaction, and (iv)
settled compaction. These elements work together to improve write
performance, reduce write amplification and write stalls, and avoid
the negative impacts of large SSTable sizes on read performance.

UniKV: Toward High-Performance and Scalable KV Storage
in Mixed Workloads via Unified Indexing [11] unifies the key
design ideas of hash indexing and LSM-tree in a single system to
simultaneously improve the performance in reads, writes, and scans
for large LSM KVs. UniKV leverages data locality to differentiate
the indexing management of key-value pairs.

By using hash indexing to accelerate single-key access on a small
fraction of frequently accessed (i.e., hot) key-value pairs, while for
the large fraction of infrequently accessed (i.e., cold) key-value
pairs, the original LSM-tree-based design is still followed to provide
high scan performance. Additionally, dynamic range partitioning
is proposed to support very large LSM KVs and provide good scal-
ability. By unifying hash indexing and the LSM-tree in a single
system with dynamic range partitioning, UniKV aims to achieve
high performance in reads, writes, and scans in large key-value
stores.

On Performance Stability in LSM-based Storage Systems [7]
minimizes write stalls in LSM-trees by carefully evaluating and
optimizing LSM merge schedulers given an I/O bandwidth budget.
The paper proposes a simple yet effective two-phase experimental
approach to evaluate write stalls for various LSM-tree designs. The
approach consists of a testing phase, where the maximum write
throughput is measured, and a running phase, where the data ar-
rival rate is set close to the measured maximum write throughput
to evaluate its write stall behavior based on write latencies. By
identifying and exploring design choices for LSM merge schedulers,
the paper presents a new merge scheduler to address the challenges
of accurately measuring the maximum sustainable write rate and
scheduling LSM I/O operations to minimize write stalls at runtime.
With proper tuning and configuration, LSM-trees can achieve both
high write throughput and small performance variance.

A Low-cost Disk Solution Enabling LSM-tree to Achieve High
Performance for Mixed Read/Write Workloads [9], adds an on-
disk compaction buffer to the LSM-tree to minimize frequent cache
invalidations caused by compactions. This compaction buffer di-
rectly maps to the buffer cache and maintains the frequently visited
data in the underlying LSM-tree but is updated at a much lower rate
than the compaction rate. The LSbM-tree (Log-Structured buffered-
Merge tree) directs queries to the compaction buffer for frequently
visited data that will be hit in the buffer cache and to the underly-
ing LSM-tree for others, including long-range queries. By using a
small amount of disk space as a compaction buffer, the LSbM-tree
achieves high and stable performance for queries by serving fre-
quently accessed data with effective buffer caching while retaining
all the merits of LSM-tree for write-intensive workloads.



Harvard CS265, LSM-Tree Key Value Store Literature Review, 2023 Ian Kelk

3.5 Limitations and Assumptions
Some limitations and assumptions of the four papers focused on
optimizing compaction can be grouped as follows:

• Compatibility: Both BoLT [5] and LSbM-tree [9] do not dis-
cuss compatibility with other key-value store systems or
LSM-tree implementations, which may limit their applicabil-
ity.

• Workload Assumptions: BoLT [5] assumes fine-grained SSTa-
bles are beneficial, while UniKV [11] assumes high data ac-
cess skewness and locality. These assumptions may not hold
true for all workloads.

• Memory and Metadata Caching Overhead: Both BoLT [5]
and UniKV [11] do not thoroughly address issues related to
memory overhead and metadata caching, which may impact
scalability and performance.

• Performance Trade-offs and Evaluation: All four papers have
limitations in their performance evaluations and do not com-
prehensively consider varying workloads, system configura-
tions, or real-world scenarios.

• Compaction Strategies: Both BoLT [5] and LSbM-tree [9]
propose compaction strategies without providing enough
details on their impact on overall system performance and
management.

• Scalability and Robustness: BoLT [5] and LSbM-tree [9] do
not discuss scalability and robustness under varying work-
loads and system configurations, potentially limiting their
applicability in different settings.

• Implementation Complexity: UniKV’s [11] implementation
introduces higher complexity compared to traditional key-
value store designs, which may impact maintainability, ease
of use, and potential for future optimizations.

• Write Throughput and Stalls: Performance Stability [7] makes
assumptions about write throughput and stalls, which may
not be accurate or generalizable across different LSM-tree
designs and workloads.

4 ENHANCING MEMORY AND STORAGE
MANAGEMENT

4.1 Motivation for enhancing memory and
storage management

Enhancing memory and storage management in LSM KVs is of
vital importance, as it directly impacts read and write performance,
latency, disk wear, and overall efficiency. Modern day key-value
stores must contend with several interconnected issues, including
read amplification, false positives in Bloom filters, sensitivity to
compaction rate and extent, inefficient memory management, la-
tency of delete operations, violation of privacy regulations, write
stalls, and performance fluctuations.

The advent of SSDs has significantly reduced the performance
gap between storage and memory devices, making the cost of mem-
ory access more noticeable when compared to storage access. More-
over, as data size increases, the overheads produced when querying
and constructing Bloom filters lead to deteriorating performance.
Key-value stores often have to handle streaming systems, which
require efficient deletion of data outside a designated window. This

also necessitates compliance with privacy regulations like GDPR
and CCPA that require organizations to delete user data within a
set timeframe. The inability to provide guarantees for delete persis-
tence latency can result in privacy breaches.

4.2 Challenges for enhancing memory and
storage management

The challenges faced when enhancing memory and storage man-
agement in LSM KVs involve various issues. One such issue rooted
in the nature of LSM-trees is severe read amplification, caused by
the need to check multiple SSTables and resulting in extra I/Os
[6]. Handling read amplification often involves using Bloom fil-
ters, but these filters bring along their own set of complications:
large memory overhead and a propensity for false positives [6].
Furthermore, access skewness exists in key-value stores, making it
necessary to dynamically adjust settings for optimal performance,
a challenging feat due to varying access unevenness levels and the
dynamic nature of data hotness [6].

Another difficulty arises from LSM store’s sensitivity to the rate
and extent of compactions [2]. This sensitivity impacts both read
and write performance and increases disk wear. Adding to the
problems in LSM stores is inefficient memory management, which
manifests as cache performance issues and garbage collection over-
head as the memory store size increases [2]. The advent of SSDs
has changed the storage media landscape, causing a reduction in
the performance gap between storage and memory devices, effec-
tively transforming memory access costs into something no longer
negligible [3].

Compounding these challenges are the trade-offs between ac-
cess and construction costs of Bloom filters, which affect both read
and write performance in LSM-trees [3]. Write amplification and
write stalls in LSM KVs lead to performance fluctuations, long-tail
latencies, and degraded user experiences [10]. Deletes in LSM en-
gines cause additional difficulties, increasing space amplification
and consequently adversely affecting both read performance and
write amplification [8]. Furthermore, delete persistence latency
in LSM engines is unbounded, preventing guarantees for persis-
tent deletion and leading to potential privacy breaches due to data
retention [8].

4.3 Problems with existing solutions for
enhancing memory and storage
management

Existing solutions face numerous challenges, particularly due to
their inability to effectively address the inherent complexities of
read amplification, write amplification, and write stalls, among
others. The presented papers reveal the following shortcomings in
existing techniques:

• Current methods for reducing read amplification focus on
the use of Bloom filters; however, they do not effectively
leverage access skewness present in key-value stores. They
also suffer from false positives, leading to unnecessary I/O
operations and memory overhead [6].

• Approaches for mitigating compactions in LSM-trees do not
address the core problems of sensitivity to compactions and



LSM-Tree Key Value Store Literature Review Harvard CS265, LSM-Tree Key Value Store Literature Review, 2023

inefficient memory management, which cause performance
issues and negatively impact garbage collection overhead
[2].

• As the performance gap between storage and memory de-
vices narrows (particularly with SSDs), Bloom filters become
a bottleneck in LSM-trees, making current solutions inade-
quate in addressing the challenges of workload skew and the
trade-off between access and construction costs of Bloom
filters [3].

• Existing LSM engines struggle to handle delete operations
efficiently, leading to increased space amplification, read cost,
write amplification, and privacy concerns due to unbounded
delete persistence latency [8].

• Current LSM KVs primarily focus on reducing write ampli-
fication rather than addressing write stalls. The all-to-all
compaction in the L0-L1 levels of the LSM-tree consumes
CPU cycles and SSD bandwidth, causing write stalls, perfor-
mance fluctuations, and long-tail latencies [10].

Proposed solutions such as ElasticBF, Accordion, Chucky, Lethe,
andMatrixKV aim to address these challenges by targeting different
aspects of memory and storage management in LSM-trees, striving
to improve performance and user experience.

4.4 Core intuitions for enhancing memory and
storage management in the papers

ElasticBF: Elastic Bloom Filter with Hotness Awareness for
Boosting Read Performance in Large Key-Value Stores [6] is a
fine-grained heterogeneous Bloom filter management scheme with
dynamic adjustment according to data hotness (a measure of how
frequently the key-value pair is accessed). By assigning multiple
small-sized Bloom filters to each small group of key-value pairs
when building SSTables, it allows for dynamic allocation of Bloom
filters based on the hotness of the key-value pairs. This reduces
the overall false positive rate during the whole execution process
of applications while still limiting the volume of all Bloom filters,
leading to improved read performance in large key-value stores.

Accordion: Better Memory Organization for LSM Key-Value
Stores [2] reapplies the LSM design principles to memory man-
agement in LSM KVs. Accordion proposes organizing the memory
store into two parts: (1) a small dynamic segment that absorbs
writes, and (2) a sequence of static segments created from previous
dynamic segments. This partitioning allows the memory store to
benefit from in-memory compactions, which eliminate redundant
data before it is written to disk. The benefits of Accordion include:

• Fewer compactions, which reduces the write volume and
resulting disk wear.

• More keys in RAM, improving read latency.
• Reduced garbage collection overhead, as it dramatically de-
creases the size of the dynamic segment.

• Cache friendliness, as the flat nature of immutable indices
improves locality of reference and boosts hardware cache
efficiency.

Accordion proactively handles disk compaction even before data
reaches the disk and addresses garbage collection overhead by di-
rectly improving the memory store structure and management. The

approach increases memory utilization and reduces fragmentation,
garbage collection costs, and the disk write volume, resulting in
significantly improved system performance and reduced disk wear.

Chucky: A Succinct Cuckoo Filter for LSM-Tree [3] proposes a
new LSM-tree filter design that replaces Bloom filters with a Cuckoo
filter variant that maps each data entry to both a fingerprint and an
auxiliary Level ID (LID). Chucky compresses LIDs using techniques
from information theory, such as Huffman coding, to keep the FPR
low and stable as data grows.

Cuckoo filters and Bloom filters are both probabilistic data struc-
tures that are used to test whether an element is a member of a
set. The trade-off is that Cuckoo filters are generally more space-
efficient and support item deletion, but may have a small chance of
false negatives (where Bloom filters have no chance of false nega-
tives). Chucky points out that LIDs in an LSM-tree are highly com-
pressible due to the exponential growth of the LSM-tree. Chucky
proposes that since most entries reside at larger levels, the distribu-
tion of LIDs within the Cuckoo filter is heavily skewed. Because
of this, LIDs of larger levels can be encoded with fewer bits than
those of smaller levels to minimize the average LID size. By sav-
ing bits from LID encoding, the saved bits can be assigned to the
fingerprints to keep them large and maintain a low false positive
rate (FPR). This design simultaneously scales memory bandwidth,
memory footprint, and FPR while providing more efficient and
robust performance in various contexts, including storage media,
workload skew, LSM-tree tuning, and data size.

Lethe: A Tunable Delete-Aware LSM Engine proposes a new
LSM KV which efficiently supports deletes without compromising
the benefits of LSM-trees. Lethe introduces two new LSM design
components: FADE and KiWi.

• FADE (Fast Deletion) is a new family of compaction strate-
gies that prioritize files for compaction based on the number
of invalidated entries contained, the age of the oldest tomb-
stone, and the range overlap with other files. This helps in
deciding when to trigger a compaction on which files, to
purge invalid entries within a threshold.

• KiWi (Key Weaving Storage Layout) is a new continuum
of physical layouts that allow for tunable secondary range
deletes without causing latency spikes, by introducing the
notion of delete tiles. KiWi augments the design of each file
with several delete tiles, each containing several data pages.
A delete tile is sorted on the secondary (delete) key, while
each data page remains internally sorted on the sort key.
KiWi facilitates secondary range deletes by dropping entire
pages from the delete tiles, with a constant factor increase
in false positives.

Lethe is the first LSM engine to offer efficient deletes while im-
proving read performance, supporting user-defined delete latency
thresholds, and enabling practical secondary range deletes.

MatrixKV: Reducing Write Stalls and Write Amplification
in LSM-tree Based KV Stores with Matrix Container in NVM
[10] exploits non-volatile memory (NVM) to address two limita-
tions of LSMKVs: write stalls and write amplification. The proposed



Harvard CS265, LSM-Tree Key Value Store Literature Review, 2023 Ian Kelk

solution aims to perform smaller and cheaper L0-L1 compactions
to reduce write stalls while reducing the depth of LSM-trees to
mitigate write amplification.

MatrixKV utilizes four novel techniques to achieve these goals:

• Matrix container: Relocating and managing the L0 level in
NVM with the proposed matrix container, consisting of a
receiver and a compactor.

• Column compaction: A fine-grained compaction between
L0 and L1, compacting small key ranges at a time, which
reduces write stalls by processing a limited amount of data
and promptly freeing up the column in NVM for the receiver
to accept data flushed from DRAM.

• Reducing LSM-tree depth: MatrixKV increases the size of each
LSM-tree level to reduce the number of levels, reducing write
amplification and delivering higher throughput.

• Cross-row hint search: MatrixKV introduces this technique
for the matrix container to maintain adequate read perfor-
mance by logically sorting all keys in the container, thus
accelerating search processes.

4.5 Limitations and Assumptions
Some limitations and assumptions of the five papers focused on
enhancing memory and storage management can be grouped as
follows:

• Assumption of specific access patterns or data characteristics:
ElasticBF [6], Accordion [2], and Lethe [8] assume specific
access patterns or data characteristics, which might not be
true for all key-value stores or use cases, potentially affecting
the effectiveness of their proposed solutions.

• Complexity: All the proposed solutions for enhancing mem-
ory and storage management introduce various techniques
and components that increase the complexity of implemen-
tation, maintenance, and optimization. This might affect the
ease of adopting these solutions in production systems.

• Scalability and applicability: ElasticBF [6], Accordion [2],
Chucky [3], and MatrixKV [10] have limitations in terms
of scalability to larger memory stores, diverse workloads,
or different storage configurations. This might affect the
generalizability of their proposed solutions.

• Parameter tuning and reliance on heuristics: Accordion [2] and
Chucky [3] rely on parameter tuning and heuristics, which
can significantly impact the performance of their algorithms.
Finding optimal values or accurately capturing compaction
decisions might be challenging in practice.

• Overhead and performance trade-offs: ElasticBF [6], Accor-
dion [2], Chucky [3], and Lethe [8] introduce potential over-
heads or trade-offs in their solutions, which might affect
overall system performance. These trade-offs include CPU,
memory, storage overheads, garbage collection, false posi-
tives, and increased read or write costs.

• Dependency on specific technologies: MatrixKV’s [10] solution
depends on the presence of NVM and assumes consistent
performance gains with NVM. This might limit its applica-
bility in systems without NVM or where NVM technology
is not yet mature or widely adopted.

5 FUTUREWORK
As the use of LSM KVs continues to evolve and expand to a variety
of applications, identifying potential areas for future work is essen-
tial to fostering innovation and maintaining the relevance of the
technology. Here are a few ideas:

• Exploring new I/O scheduling and resource allocation tech-
niques to address previously unexplored performance bottle-
necks and limitations in LSM KVs, offering further optimiza-
tions in tail latency, write stalls, and read/write amplification.

• Investigating the applicability and adoption of the proposed
solutions (SILK+, BoLT, UniKV, Performance Stability, LSbM-
tree, ElasticBF, Accordion, Chucky, Lethe, and MatrixKV) in
other LSM KV implementations or under diverse workloads
and settings to determine their adaptability and generaliz-
ability.

• Conducting more comprehensive performance evaluations
under varying workloads, system configurations, and real-
world scenarios to better understand the trade-offs and im-
pact of the proposed enhancements in memory and storage
management, compaction optimization, and tail latency re-
duction.

• Analyzing the impact of advances in non-volatile memory
and storage technologies on LSM KV performance, adapting
existing solutions or proposing novel approaches to fully
leverage the potential of these technologies for improved
performance and efficiency.

• Investigating the impact of hardware advancements, such
as new storage-class memory (SCM) technologies and per-
sistent memory, on LSM KV designs, compaction schemes,
and memory/storage management techniques.

6 CONCLUSION
The research papers discussed in this review highlight the ongoing
efforts to address performance issues in LSM KVs. By implementing
novel approaches like SILK+, BoLT, UniKV, Performance Stability,
LSbM-tree, ElasticBF, Accordion, Chucky, Lethe, and MatrixKV,
researchers are striving to enable more efficient, cost-effective, and
consistent performance in LSM-trees while maintaining or improv-
ing performance.

We’ve compared the different methods and approaches presented
in these papers, emphasizing their core intuitions and highlighting
their particular challenges. Although many solutions attempt to
tackle the performance bottlenecks in LSM-trees, none of them can
universally and completely address all issues: there is no perfect
design and no data structure minimizes all performance trade-offs
[4]. Each paper discussed here provides a unique perspective on
specific aspects, whether it be reducing read and write amplifica-
tion, mitigating tail latency, optimizing compactions, or enhancing
memory and storage management.

REFERENCES
[1] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chand-

hiramoorthi, and Diego Didona. 2020. SILK+ Preventing Latency Spikes in
Log-Structured Merge Key-Value Stores Running Heterogeneous Workloads.
ACM Transactions on Computer Systems (TOCS) 36 (2020), 1 – 27.

[2] Edward Bortnikov, Anastasia Braginsky, Eshcar Hillel, Idit Keidar, and Gali Sheffi.
2018. Accordion: Better Memory Organization for LSM Key-Value Stores. Proc.
VLDB Endow. 11 (2018), 1863–1875.



LSM-Tree Key Value Store Literature Review Harvard CS265, LSM-Tree Key Value Store Literature Review, 2023

[3] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-
Tree. Proceedings of the 2021 International Conference on Management of Data
(2021).

[4] Stratos Idreos and Mark D. Callaghan. 2020. Key-Value Storage Engines. Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(2020).

[5] Dongui Kim, Chanyeol Park, Sang-Won Lee, and Beomseok Nam. 2020. BoLT:
Barrier-optimized LSM-Tree. Proceedings of the 21st International Middleware
Conference (2020).

[6] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. 2019. ElasticBF:
Elastic Bloom Filter with Hotness Awareness for Boosting Read Performance in
Large Key-Value Stores. In USENIX Annual Technical Conference.

[7] Chen Luo and Michael J. Carey. 2019. On Performance Stability in LSM-based
Storage Systems. ArXiv abs/1906.09667 (2019).

[8] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. 2020. Lethe: A Tunable Delete-Aware LSM Engine. Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (2020).

[9] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Yanfeng Zhang, Siyuan Ma, and
Xiaodong Zhang. 2018. A Low-cost Disk Solution Enabling LSM-tree to Achieve
High Performance forMixed Read/WriteWorkloads. ACMTransactions on Storage
(TOS) 14 (2018), 1 – 26.

[10] Ting Yao, Yiwen Zhang, Ji guang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
USENIX Annual Technical Conference.

[11] Qiang Zhang, Yongkun Li, Patrick P. C. Lee, Yinlong Xu, Qiu Cui, and Liu Tang.
2020. UniKV: Toward High-Performance and Scalable KV Storage in Mixed
Workloads via Unified Indexing. 2020 IEEE 36th International Conference on Data
Engineering (ICDE) (2020), 313–324.


	Abstract
	1 Introduction
	1.1 Paper for reducing tail latencies
	1.2 Papers for optimizing compaction
	1.3 Papers for enhancing memory and storage management

	2 Reducing tail latencies
	2.1 Motivation and Challenges
	2.2 Proposed Solution
	2.3 Limitations and assumptions

	3 Optimizing compaction
	3.1 Motivation for optimizing compaction
	3.2 Challenges of optimizing compaction
	3.3 Problems with existing solutions for optimizing compaction
	3.4 Core intuitions for optimizing compaction presented in the papers
	3.5 Limitations and Assumptions

	4 Enhancing memory and storage management
	4.1 Motivation for enhancing memory and storage management
	4.2 Challenges for enhancing memory and storage management
	4.3 Problems with existing solutions for enhancing memory and storage management
	4.4 Core intuitions for enhancing memory and storage management in the papers
	4.5 Limitations and Assumptions

	5 Future Work
	6 Conclusion
	References

